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A novel reaction of 2-(arylamino)-1-(methylthio)-1-tosylethenes
with hydrogen iodide leading to quinoline derivatives
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Abstract—The reaction of 2-(arylamino)-1-(methylthio)-1-tosylethenes (4) with hydrogen iodide in refluxing toluene gave 3-tosyl-2-
(tosylmethyl)quinoline derivatives (6) in good yields. In this reaction, hydrogen iodide dose not only reductively removes the meth-
ylthio group of 4 to form an intermediary 1-(arylamino)-2-tosylethene (5), but also serves as a protic catalyst for the subsequent
dimeric cyclization of 5 to lead to the quinoline derivatives (6).
� 2006 Elsevier Ltd. All rights reserved.
Ketene dithioacetal S,S-dioxides (1),1 easily prepared
from (methylthio)methyl p-tolyl sulfone2,3 and various
aldehydes, show unique reactivities that can be utilized
in various organic syntheses.1,2,4 The ketene dithioacetal
S,S-dioxide functionality has a good acceptability for
radicals5–7 and hydride ion.8 Furthermore, an electron
can be transferred to this functionality either electro-
chemically9 or from Mg metal.10 In these cases, the
carbon–sulfonyl bond of 1 (G = Ar) was reductively
cleaved to give 1-aryl-2-(methylthio)ethenes. To the best
of our knowledge, no reductive removal of the methyl-
thio group of 1 has appeared in the literature. In this
context, we initiated our investigation to reductively
eliminate the methylthio group of 1 with hydrogen
iodide, which is well known to have reducing ability.11 A
plausible mechanism is depicted in Eq. 1 that is analo-
gous to the mechanism described for the dehalogenation
of a-halo carbonyl compounds with hydrogen iodide.12
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We treated 1 (G = p-tol) with hydrogen iodide in reflux-
ing toluene, but a trace amount (�2%) of 1-tolyl-2-tosyl-
ethene was obtained along with a large amount (�98%)
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of the starting material. Hence, we designed compound
(1) bearing an amino group as the G group, which
would stabilize an intermediary cation (2) so as to pro-
mote the addition of the proton to the C–C double
bond. With this expectation in mind, we carried out
the reaction of 2-anilino-1-(methylthio)-1-tosylethene
(4; Y = H) with hydrogen iodide. To our surprise,
the formation of 3-tosyl-2-(tosylmethyl)quinoline (6;
Y = H) was observed as shown in Eq. 2. This intriguing
reaction seems to be via the anticipated reduction prod-
uct (5). Herein we report a novel reaction of 4 with
hydrogen iodide to produce quinoline derivatives (6) in
good yield.
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The starting materials (4)13 were prepared by the con-
densation reaction of anilines with 2-(methylthio)-2-
tosylethanal.6c At first, we examined the reaction of 4
(Y = H) with hydrogen iodide. To a solution of 1
(Y = H) in dry toluene was added a 55% aqueous solu-
tion of hydrogen iodide (1.0 equiv), and the resulting
mixture was stirred at room temperature, but no reac-
tion occurred. As the reaction temperature became high-
er, the reaction proceeded faster as summarized in Table
1. The reaction in refluxing toluene completed within 2 h
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Table 1. The reaction of 4 (Y = H) with hydrogen iodide

Entry HI (equiv) Conditions Yield (%) of 6

(Y = H)

1 1.0 Toluene, rt, >4 h 0a

2 1.1 Toluene, 75 �C, 24 h 66
3 1.1 CH3CN, 75 �C, 24 h 55b

4 1.1 Toluene, reflux, 2 h 77
5 0.5 Toluene, reflux, 11 h 73c

6 2.2 Toluene, reflux, 3 h 56

a No reaction.
b Starting material was recovered in 14%.
c Starting material was recovered in 7%.
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to give 6 (Y = H) in a 77% yield.14 From its spectral
data (1H NMR, 13C NMR, IR and EA), we assigned
the structure (6; Y = H) to this product. Finally, it
was confirmed by single-crystal X-ray crystallographic
analysis (Fig. 1).15

As shown in Table 1, the reaction in toluene was some-
what faster than that in acetonitrile (entry 2 vs 3). The
amount of hydrogen iodide affected the yield of 6
(Y = H) slightly: the presence of a small excess of hydro-
gen iodide gave the best result as summarized in entries
4–6. Interestingly, the present reaction is characteristic
of hydrogen iodide. In the reaction of 4 (Y = H) with
various protic acids such as perchloric acid, p-toulene-
sulfonic acid, acetic acid, trifluoroacetic acid, hydrochlo-
ric acid and hydrobromic acid, no quinoline derivative 6
(Y = H) was obtained except for the reaction with
Figure 1. X-ray structure of 6 (Y = H).

Table 2. The reaction of various substituted 4

Entry Compound Time (h)

1 4 (Y = p-OMe) 1
2 4 (Y = p-Me) 1.5
3 4 (Y = o-Me) 2
4 4 (Y = m-Me) 2
5 4 (Y = p-Br) 15
6 4 (Y = p-COOMe) 5

a Ratio of 6 (Y = 5-Me) and 6 (Y = 7-Me) was 9:1 determined by 1H NMR
b Compound 6 (Y = H) was obtained in 12%.
hydrobromic acid, which gave 6 (Y = H) in a 10% yield
even after the reaction time was prolonged to 29 h.

Next, the compounds (4) having various substituents at
the phenyl group were subjected to the reaction with
hydrogen iodide in refluxing toluene. The results are
given in Table 2, showing that both of the electron-
donating substituents (OMe and Me) and the electron-
withdrawing substituent (COOMe) are tolerated in the
present reaction to give the corresponding 6 in from
moderate to high yields. It is noteworthy that the meth-
oxy group remained unchanged in the reaction of 4
(Y = p-OMe). This is because the present reaction con-
ditions using 1.1 equiv of hydrogen iodide are too mild
to cleave the O–Me bond.16

For the formation of the quinoline derivative (6; Y = H)
starting from 4 (Y = H), we suppose the reaction path-
way in Scheme 1, which proceeds by way of the inter-
mediary 1-anilino-2-tosylethene (5). The intermediate (5)
is given by the action of hydrogen iodide on 4 (Y = H).
This reduction is accompanied by the formation of
methanesulfenyl iodide which is subsequently converted
to iodine and dimethyl disulfide. Hydrogen iodide pro-
motes the dimerization of 5: hydrogen iodide adds to 5
to produce the cationic intermediate (B) which under-
goes the ring-closure reaction. The elimination of a pro-
ton and aniline forms a dihydroquinoline intermediate
(7). The subsequent oxidative aromatization of 7 pro-
duces the quinoline derivative (6; Y = H). It is likely that
Product Yield (%)

6 (Y = 6-OMe) 68
6 (Y = 6-Me) 85
6 (Y = 8-Me) 84
6 (Y = 5- and 7-Me) 87a

6 (Y = 6-Br) 40b

6 (Y = 6-COOMe) 60
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Scheme 1. Representation of a plausible reaction mechanism.
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the final oxidation is achieved by iodine. Iodine can be
produced by hydrogen iodide and air.

It is crucial to the proposed mechanism that the initially
formed 5 easily dimerizes by the aid of hydrogen iodide.
When the reaction was stopped at the initial stage
(10 min), we isolated the supposed intermediate 7 (25%
yield) along with 6 (Y = H) (33% yield) as summarized
in Eq. 3. This result suggested that intermediate 5 can
be smoothly converted to 7. The structure of 7 was
deduced from its physical properties and its easy deriva-
tion into 6 (Y = H) in the presence of hydrogen iodide
under aerobic conditions.
SMe

Ts

55% HIPhNH

H
N

Ts

Ts

N

Ts

Ts

4 (Y=H)

toluene
reflux, 10 min

4 (Y=H)

7

6 (Y=H)

+

+

33%

25%

31%

ð3Þ
If the aniline group of 5 is replaced by a bulky amino
group, the dimerization would be retarded. In fact, 2-
diphenylamino-1-tosylethene (9) was obtained by the
reaction of 1-(methylthio)-2-diphenylamino-1-tosyleth-
ene (8) with hydrogen iodide (Eq. 4).
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Furthermore, we prepared the proposed intermediate (5)
from aniline and tosylacetylene according to the litera-
ture.17 Surprisingly, this compound was too reactive to
be isolated in a pure form by column chromatography
on silica gel. Therefore, it was subjected to the reaction
with hydrogen iodide without any purification. By the
reaction of crude 5 with hydrogen iodide in refluxing tol-
uene, 6 (Y = H) and 7 were formed in 53% and 10%
yields, respectively (Eq. 5).18
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As shown in the mechanism of Scheme 1, the transfor-
mation of 5 to 7 would be induced by the action of pro-
ton. This means that, for this transformation, hydrogen
iodide is not always necessary. Indeed, we obtained 7 in
a 49% yield when trifluoroacetic acid was employed in-
stead of hydrogen iodide (Eq. 6). Thus, the mechanism
of Scheme 1 was shown to be plausible for the present
transformation of 5 into 7.
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Thus, we have found that the reaction of 2-(arylamino)-
1-(methylthio)-1-tosylethenes (4) with hydrogen iodide
resulted in the formation of 3-tosyl-2-(tosylmethyl)quin-
oline derivatives (6). Now we are investigating the appli-
cation of this intriguing quinoline ring formation to the
compounds having other electron-withdrawing groups
instead of the sulfonyl group of 4 or 5.
Acknowledgement

This work was financially supported in part by a Grant-
in-Aid from Forum on Iodine Utilization.
Supplementary data

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.tetlet.
2006.12.054.
References and notes

1. (a) Ogura, K.; Yahata, N.; Hashizume, K.; Tsuyama, K.;
Takahashi, K.; Iida, H. Chem. Lett. 1983, 767; (b) Ogura,
K.; Iihama, T.; Kiuchi, S.; Kajiki, T.; Koshikawa, O.;
Takahashi, K.; Iida, H. J. Org. Chem. 1986, 51, 700; (c)
Ogura, K.; Yahata, N.; Fujimori, T.; Fujita, M. Tetra-
hedron Lett. 1990, 31, 4621.

2. Ogura, K. Rev. Heteroatom Chem. 1991, 5, 85.
3. (a) Ogura, K.; Yahata, N.; Takahashi, K.; Iida, H.

Tetrahedron Lett. 1983, 24, 5761; (b) Ogura, K.; Ohtsuki,
K.; Nakamura, M.; Yahata, N.; Takahashi, K.; Iida, H.
Tetrahedron Lett. 1985, 26, 2455; (c) Ogura, K.; Yahata,
N.; Minoguchi, M.; Ohtsuki, K.; Takahashi, K.; Iida, H.
J. Org. Chem. 1986, 51, 508; (d) Ogura, K.; Tsuruda, T.;
Takahashi, K.; Iida, H. Tetrahedron Lett. 1986, 27, 3665;
(e) Ogura, K.; Uchida, T.; Tsuruda, T.; Takahashi, K.
Tetrahedron Lett. 1987, 28, 5703.

4. (a) Hewkin, C. T.; Jackson, R. F. W.; Clegg, W. J. Chem.
Soc., Perkin Trans. 1 1991, 3091; (b) Ogura, K.; Taka-
hashi, S.; Kawamoto, Y.; Suzuki, M.; Fujita, M.; Suzuki,
Y.; Sugiyama, Y. Tetrahedron Lett. 1993, 34, 2649; (c)
Fox, J. M.; Morris, C. M.; Smyth, G. D.; Whitham, G. H.
J. Chem. Soc., Perkin Trans. 1 1994, 731; (d) Sugiyama,
Y.; Suzuki, Y.; Mitamura, S.; Kawamoto, Y.; Fujita, M.;
Ogura, K. Bull. Chem. Soc. Jpn. 1994, 67, 3346; (e) Ogura,
K.; Miokawa, M.; Fujita, M.; Ashidaka, H.; Mito, A.
Nonlinear Optics 1995, 13, 253; (f) Craig, D.; Meadows, J.
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